
LUCAS: Layered Universal Codec Avatars
Supplementary Material

Di Liu1,2 Teng Deng1 Giljoo Nam1 Yu Rong1 Stanislav Pidhorskyi1 Junxuan Li1

Jason Saragih1 Dimitris N. Metaxas2 Chen Cao1

1Codec Avatars Lab, Meta 2Rutgers University

1. Network Architecture

In this section, we provide more details of our network ar-
chitecture and hyperparameters for our id-conditioned hy-
pernetwork, appearance deocder, geometry decoder, Gaus-
sian hypernetwork and Gaussian decoder, respectively.
Identity-conditioned hypernetwork. We adopt a U-
Net [2] architecture as our identity-conditioned hypernet-
work that takes as input the neutral geometry and texture
of a subject to predict subject-specific decoder parame-
ters. The network consists of two parallel downsampling
branches that process geometry and texture features sepa-
rately, followed by a joint upsampling branch. The input
geometry and texture are first normalized by subtracting
their respective means and dividing by their standard de-
viations. The geometry branch processes the normalized
geometry (scaled by 0.2) while the texture branch processes
the normalized texture (scaled by 0.4) through a series of
downsampling blocks. The network’s channel dimensions
progressively increase through the layers with sizes of (3,
32, 64, 128, 256, 256, 512, 512, 512, 512, 256). Fea-
tures from both branches are concatenated at each scale
and processed through the upsampling branch. The network
generates three types of outputs through Transfer modules
(Fig. 1(a)): untied bias parameters (Θid), per-identity ge-
ometry displacement (d), and per-identity positional encod-
ing (f). Each Transfer module consists of two weight-
normalized convolution (Conv2DWN) layers with learnable
biases, mapping the concatenated features through a hidden
dimension of 512 channels, followed by LeakyReLU acti-
vation (α = 0.2), before outputting the final parameters.
For both face and hair branches, six texture bias parameters
are generated for the appearance decoder, corresponding to
different resolution levels. The geometry decoder receives
five geometry displacement parameters for its Block mod-
ules, with an additional displacement map (d) for the output
layer. The pixel decoder receives a positional encoding (f)
of dimension [4, 1024, 1024] generated by processing the
concatenation of the final upsampled features and the input
texture through a Transfer module. The architecture lever-

𝛼=0.2

(a) Transfer module (b) Block module

Input

Conv2DWN

LeakyReLU

Conv2DWN Learnable Bias

Output

Input

Conv2DWN

Conv2DWN

𝛼=0.2

LeakyReLU

Pixel Shuffle

Output

Figure 1. Architecture of (a) Transfer module and (b) Block
module. (a) Transfer Block processes features through two
Conv2dWN layers with intermediate LeakyReLU activation and
scaled learnable bias. (b) Block module combines Conv2dWN,
LeakyReLU activation, and pixel shuffle operations for feature
transformation and upsampling.

ages weight normalization throughout its convolution and
linear layers for stable training, with careful initialization
using Glorot initialization scaled by 0.2 for most layers and
1.0 for the final convolution layers in the Transfer modules.

Appearance decoder. The face appearance decoder Dface
e

processes expression encoding z, view-dependent condi-
tions ω and neck pose η to generate detailed textures.
Specifically, z ∈ R16 is first processed by a Block mod-
ule Fig. 1(b)) to obtain features in R128, while the view
direction encoding ω ∈ R3 and neck pose η ∈ R6 are
transformed through a linear layer and LeakyReLU activa-
tion to R16. These combined features are then processed
through a cascade of Block modules that progressively up-
sample the spatial resolution from 8× 8 to 256× 256 while
reducing the channel dimensions (160, 64, 32, 16, 12, 8, 4).

1

The view-dependent conditioning enables the network to
capture view-dependent effects like specular highlights and
shading variations. For hair appearance decoder Dhair

e , we
use a similar network architecture with additional head pose
h encoded to R16 through linear layers and LeakyReLU ac-
tivations, resulting in a 176-dimensional feature vector after
concatenation.
Geometry decoder. The face geometry decoder Dface

g com-
bines expression encoding z with neck pose parameters η to
capture expression-dependent geometry deformations and
neck movements. The input z ∈ R16 is first processed by
a Block module, expanding the features to R128. Mean-
while, the neck pose η is encoded through a linear layer and
LeakyReLU to R16. These concatenated features are pro-
cessed through the same progressive upsampling architec-
ture as the appearance decoder. Notably, the geometry de-
coder includes a mask output that helps handle occlusions or
invalid regions that may occur due to extreme neck poses or
expressions. For hair geometry decoder Dhair

g , the network
additionally conditions on head pose h, which is encoded
similarly to η, resulting in a 160-dimensional feature vector
after concatenation.
Gaussian-splatting hypernetwork. As shown in Fig. 2,
our Gaussian hypernetwork Egs

id shares the same U-Net
backbone as the PiCA hypernetwork, consisting of two par-
allel downsampling branches that process geometry Gneu
and texture Tneu features separately. Through the dedicated
downsampling branches, the input geometry and texture
are first normalized (0.2× and 0.4× respectively) and pro-
cessed into multi-scale feature maps. The resulting features
are concatenated at each scale and processed through an up-
sampling network. Through a sequence of transfer modules,
the network predicts the identity-specific bias map Θgs

id and
extracts mean color attributes dcmean from the neutral appear-
ance data, as formulated in Eq. 7 of the main paper. These
bias parameters control the position, rotation, scale, opac-
ity and color attribute of the splatted Gaussians anchored at
mesh vertices {t̂k}Mk=1, allowing for person-specific render-
ing characteristics. The same architecture is employed for
both face and hair branches, enabling joint optimization of
all rendering components through a unified hypernetwork
backbone.
Gaussian decoder. The Gaussian decoder Dgs consists
of a progressive upsampling network that transforms in-
put features to Gaussian attributes. Taking as input a 128-
dimensional expression encoding concatenated with a 16-
dimensional neck pose encoding η, the network first pro-
cesses them through two MLP layers to obtain 8×8 feature
maps. These features are then gradually upsampled through
a series of transposed convolution layers with LeakyReLU
activations (α = 0.2), expanding the spatial resolution from
8×8 to 1024×1024 while progressively reducing the chan-
nel dimensions (256, 128, 64, 32, 16, 59). The final layer

Neut. geometry

Geom. bias
transfer network

Down

Down

…

Down

Down

Down

…

Down

Neut. appearance

Up

Up

…

Up

Bias

Bias

Tex. bias
transfer network

…
…

…

𝑑!"#$
%,'#("/𝑑!"#$

%,)#*+

NormNorm &
Up sample

Ident. bias
θ*,

Mean color
attribute d

θ*,
-.,'#("/θ*,

-.,)#*+

Figure 2. Overview of Gaussian hypernetwork. The network
processes normalized geometry Gneu and texture Tneu through par-
allel branches to predict identity-specific bias parameters Θgs

id and
mean color attributes dcmean for Gaussian rendering. The same ar-
chitecture is used for both face and hair branches.

outputs a 59-channel feature map, where the first 49 chan-
nels encode the spherical harmonics coefficients for appear-
ance, and the remaining 10 channels encode the Gaussian
attributes: position delta δtk, rotation quaternion qk, and
scale sk. The quaternions are normalized and scales are
constrained through a softplus activation multiplied by 0.5.
An additional sigmoid activation is applied to the first spher-
ical harmonic coefficient to obtain the opacity ok. The face
and hair branches share the same architecture but operate
independently to handle their respective geometry and ap-
pearance characteristics.

Gaussian Rendering. After obtaining the Gaussian at-
tributes from both face and hair decoders, we concatenate
their features for joint rendering. Let N = Nf +Nh denote
the total number of Gaussians, where Nf and Nh represent
face and hair Gaussians respectively. We combine their po-
sition deltas δt ∈ RN×3, rotation quaternions q ∈ RN×4,
scales s ∈ RN×3, opacities o ∈ RN×1, and spherical har-
monics coefficients dc ∈ RN×48. For RGB rendering, the
color attribute ck ∈ R48 for the k-th Gaussian is computed
as:

ck =

[
dc,base
k + dcmean

β · dc,ho
k

]
(1)

where dc,base
k ∈ R3 is the base color component (first three

coefficients), dcmean ∈ R3 is the mean color vector, dc,ho
k ∈

R45 represents the higher-order coefficients (remaining 45
coefficients). β is a scaling factor for the higher-order terms
where we set as 0.05 in our experiment.

Figure 3. More visualization of avatar dehairing. Our method
successfully removes hair while preserving the underlying head
geometry across subjects with diverse hairstyles.

2. Training details

Our model follows a two-phase training process. In the
first phase, we train only the PiCA branch using reconstruc-
tion loss Lpica and dehairing loss Ldehair. Subsequently, we
freeze these weights and train the Gaussian branch with loss
Lgs. The loss weights are configured as follows:
• Gaussian loss Lgs: λrender = 10.0, λscale = 0.2, λ∆ = 0.01;
• PiCA loss Lpica: λI = 4.0, λD = 10.0, λN = 1.0, λM =

0.1, λS = 4.0, λKL = 0.001, λseg = 2.0;
• Dehairing loss Ldehair: initially λdehair = 20.0, decaying to

0 between 70k and 80k iterations;
• λpica = λgs = λdehair = 1.0.
We adopt L1 loss for both LI and Lrender due to its effective-
ness in preserving fine hair details. Hair segmentation regu-
larization Lseg is restricted to the first phase to avoid Gaus-
sian blur artifacts between hair strands. The high initial
weight of dehairing loss Ldehair accelerates the convergence
of bald geometry, ensuring accurate dehaired results with-
out interference from the hair mesh. The model is trained
using Adam optimizer with a learning rate of 0.001 for 300k
(PiCA branch) + 300k (GS branch) iterations on 4 NVIDIA
A100 GPUs.

3. Discussion

Avatar dehairing. We provide more visualization of the
dehairing results in Fig. 3. The examples demonstrate that
our method can effectively remove diverse hairstyles while
maintaining accurate head shape and facial features.
Impact of training strategy. We investigate two different
training strategies for our Gaussian model: two-stage train-
ing and joint training. In the two-stage approach, we first

Table 1. Ablation study on training strategy. While both strategies
achieve similar final performance, two-stage training offers better
stability during the optimization process.

Strategy PSNR ↑ SSIM ↑ LPIPS ↓
Two-stage training 34.5607 0.9196 0.2387
Joint training 34.5579 0.9201 0.2394

Ground truth w/o 𝒟! w/ 𝒟!

Figure 4. Impact of pixel decoder Dp. The pixel decoder helps
achieve better facial details and overall fidelity.

train the mesh model with Lpica and Ldehair for 300k itera-
tions, then freeze the mesh branch and train the Gaussian
branch with Lpica for another 300k iterations. In the joint
training approach, we train both branches simultaneously
with all losses enabled. As shown in Table 1, both strate-
gies achieve comparable performance across all metrics,
with differences being negligible (PSNR: ±0.003, SSIM:
±0.0005, LPIPS: ±0.0007). However, we observe that joint
training exhibits significant instability during the initial 10k
iterations, often leading to training explosions that substan-
tially delay the convergence process. Given these findings,
we adopt the two-stage training strategy in our final model
for its superior training stability while maintaining equiva-
lent performance.
Impact of pixel decoder. To understand the role of the
pixel decoder in our Gaussian model, we conduct experi-
ments by removing Dp and supervising the reconstruction
solely through Gaussian rendering loss. Note that this abla-
tion is conducted with joint training of the mesh and Gaus-
sian branches. As shown in Fig. 4, models with Dp achieve
noticeably better visual fidelity compared to those without.
The quantitative results in Table. 2 further support this ob-
servation, with our full model outperforming the variant
without Dp across most metrics, particularly on unseen sub-
jects. We attribute this improvement to the pixel decoder’s

Table 2. Ablation study on pixel decoder Dp. We evaluate our
universal model on both training and unseen subjects. The top two
techniques are highlighted in red and yellow, respectively.

Training subjects Unseen subjects

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
w/o Dp 34.2113 0.9164 0.2390 32.1328 0.8993 0.2607
URAvatar 33.1209 0.9021 0.2493 31.4462 0.8922 0.2625
Full model 34.5579 0.9201 0.2394 32.5847 0.9087 0.2496

Ground truth LUCAS (gs) Hair Gaussian Bald head Gaussian

Figure 5. Impact of Gaussian position prior regularization.
The position delta loss L∆ effectively constrains the Gaussians
to stay within their respective regions, leading to clean boundaries
between hair and bald head areas and faithful reproduction of the
ground truth appearance.

ability to enhance the underlying avatar geometry, which in
turn provides better spatial anchoring for Gaussian render-
ing. Notably, the performance gap widens on unseen sub-
jects, suggesting that Dp contributes to better generalization
of our model. Furthermore, even without the pixel decoder,
our model significantly outperforms URAvatar [1], demon-
strating the inherent advantage of our layered representation
design.
Impact of Gaussian position prior regularization. In
Fig. 5 we show the Gaussian shapes for the hair and bald
head regions. With the position delta loss L∆, our model
effectively maintains the Gaussian primitives in their des-
ignated regions - hair Gaussians properly represent the hair
volume while face Gaussians accurately cover the bald head
area. As shown in the visualization, the Gaussian distribu-
tions align well with the ground truth appearance, leading to
high-quality rendered results. The clear separation between
hair and bald head Gaussians demonstrates the effectiveness
of our position regularization.
Impact of training data. To understand how the number
of training identities impacts our model’s performance, we
conducted experiments with varying numbers of subjects
in the training set. Specifically, we tested our model us-
ing seven different training scales: 4, 8, 16, 32, 48, 64,
and 76 identities. The model’s performance shows consis-
tent enhancement as we increase the training set size. This

Table 3. Inference time comparison of different avatar recon-
struction methods. All times measured on NVIDIA A100.

Method Inference Time (ms)

10242 5122

URAvatar [1] 12.84 6.40
LUCAS 12.01 6.42

Driving expression Rendered avatar Mesh Normal

Face

Hair

A B

C

Face

Hair

B

C

Driving expression Rendered avatar Mesh Normal

A

Figure 6. Application on hairstyle switching. We combine face
condition from subject B, hair condition from subject C, and ex-
pressions from subject A. Note how our model maintains high-
fidelity facial details while accurately preserving the characteris-
tics of both the chosen face and hairstyle.

trend highlights the importance of diverse training samples
in building robust prior representations.
Rendering Performance. For all identities, we use a lay-
ered structure with separate Gaussian representations for
face and hair. We experiment with two configurations: a
high-quality setting using M = 1024 × 1024 = 1 Mi Gaus-
sians total (0.5 Mi each for face and hair), and a faster set-
ting with M = 512 × 512 = 0.25 Mi Gaussians total. We
observe that increasing the number of Gaussians leads to
quality improvement at the cost of slower rendering. As
shown in Tab. 3, our complete model with 1 Mi Gaussians
takes 12.01 ms for rendering, while reducing to 0.25 Mi
Gaussians achieves faster rendering at 6.42 ms on NVIDIA
A100. Our method achieves comparable rendering speed to
other Gaussian Splatting-based approaches.

4. Application

We can independently control the hair and face appearance
by using condition data from different identities. In Fig. 6,
we demonstrate this capability by combining the face from

Figure 7. Ablation study on the number of training subjects. The model’s performance improves consistently with larger training sets,
demonstrating the importance of diverse subjects for learning robust priors.

one subject, hair from another, and driving expressions us-
ing a third subject. Our model successfully preserves facial
details like wrinkles while maintaining the distinct charac-
teristics of the chosen face and hair styles, demonstrating
its ability to decompose and recombine these elements ef-
fectively.

References
[1] Junxuan Li, Chen Cao, Gabriel Schwartz, Rawal Khirodkar,

Christian Richardt, Tomas Simon, Yaser Sheikh, and Shun-
suke Saito. Uravatar: Universal relightable gaussian codec
avatars. arXiv preprint arXiv:2410.24223, 2024. 4

[2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015. 1

	Network Architecture
	Training details
	Discussion
	Application

